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Abstract 
 

The paper suggests a new class of models (Q-Phi) to capture the information 
that the market provides through the 25-Delta Strangles and 25-Delta Risk Reversals. 
The model is able to capture the stochastic movements of a full strike structure of 
implied volatilities.We argue that extracting information through this model and 
pricing path-dependent and non-benchmark strike options is a better methodology 
than using a contant implied volatility. The model can be used to price exotic options 
and hedge them robustly with benchmark European options. 
 
1 Introduction 
 

Pricing derivative products is about computing the right probabilities. For 
instance, for a foreign exchange vanilla option, we need to know the probability 
density function of the underlying exchange rate at maturity. This allows calculating 
the probability that spot at maturity is within a given interval, which for Call options 
is greater than strike and for Put options is less than strike. For a barrier option, we 
need to compute the joint probability that the exchange rate is within a given interval 
at maturity and that the spot did not touch the barrier on its path from option start date 
to maturity. Next we would multiply the appropriate probabilities with the payoff of 
the option and sum over over all possible outcomes of the exchange rate at maturity to 
get the expected payoff. The options value is this payoff discounted to the option start 
date. 

We imply the probabilities from market prices, which for liquidly traded 
options is implied volatility. The implied volatility varies for different option strikes. 
The benchmark strikes that get traded in the foreign exchange options are 50-delta 
(more commonly known as at-the-money-forward or ATMF strike), 25-Delta Call and 
25-Delta Put (also known as 75-delta Call). Figure 1 depicts a typical volatility smile 
quoted in the market. The market quotes ATMF volatility (or short form ‘vol’) , 25-
Delta Strangle and 25-Delta Risk Reversal which are related to the 25-Delta Call and 
Put volatilities as follows: 
 
25-Delta Strangle = (25-Delta Call vol + 25-Delta Put vol)/2 – ATMF vol  (1) 
25-Delta Risk Reversal = 25-Delta Call vol - 25-Delta Put vol (favouring Calls) (2) 
 

Alternatively, if 25-Delta Put vol is higher than 25-Delta Call vol, 25-Delta 
Risk Reversal is said to be ‘favouring Puts’ and is quoted as (25-Delta Put vol - 25-
Delta Call vol). 
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Fig. 1. The figure depicts the volatility smile that traders quote for liquid foreign 
exchange options. The benchmark strikes correspond to 25-Delta-Call, ATMF i.e. 50-
Delta and 25-Delta-Put. 
 
1.1 Problem of multiple volatility for same underlying 
 

European options are often priced and hedged using the Black-Scholes (BS) 
model. In BS model there is a one-to one relation between the price of a European 
option and the volatility parameter σBS . Consequently, option prices are often quoted 
by stating the implied volatility σBS , the unique value of the volatility which yields 
the option’s dollar price when used in BS. In theory, the volatility σBS in BS model is 
a constant. In practice, options with different strikes K require different volatilities 
σBS to match their market prices as shown in figure 1. Handling these market skews 
and smiles correctly is critical to foreign exchange desks, since they usually have 
large exposures across a wide range of strikes. Yet the inherent contradiction of using 
different volatilities for different options makes it difficult to successfully manage 
these risks using BS model. 
 
1.2 The information content of benchmark options prices. 
 

There are good reasons for incorporating the prices of benchmark option 
prices like 25-Delta Strangles and 25-Delta Risk Reversals into a model for pricing 
and risk managing foreign exchange options. Since the advent of the famous Black 
and Scholes (1973) option pricing model and the introduction of foreign exchange 
option contracts, the volume and liquidity of fx options has increased exponentially. 
Simultaneously more and more complex, exotic option specifications have arisen with 
features ranging from knock-in and knock-out barriers, digital options and range 
binaries to combinations of these and other features with many different payoff 
functions. 

While on the one end of the spectrum the development has gone towards 
increasingly complex specifications, there has been a significant increase in liquidity 
in the markets of standard European Call and Put options. For almost every exchange 
rate, there are liquid markets for European options with a broad range of maturities 
and strike prices – in particular the strikes corresponding to 25-Deltas. These 
benchmark options make the trading of a new piece of information possible - 
information on volatility. 
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The option prices contain fundamental information on not just the volatility 
but also other information like the co-movement of volatility with the underlying. For 
instance, when the market puts a higher premium on 25-Delta Puts vis-à-vis 25-Delta 
Calls, it is implicitly stating that it expects the volatility to be higher when spot goes 
lower than the case when spot goes higher. Therefore a high risk-reversal implies a 
high correlation between Spot and Volatility. Similarly, a high strangle implies that 
the market expects volatility itself to be volatile. As an aside, if volatilities were not 
volatile, the options market may not exist! 

Given that the benchmark option prices reveal additional information about 
the likely dynamics of the underlying, a pricing model should use their prices as input. 
This should yield an increase in accuracy over the standard Black-Scholes model. 
Then the standard options can also be used as additional hedge instruments. 

The model presented here tries to take these points into account. It is designed 
to incorporate benchmark option prices and thus the information that they contain, in 
order to improve the pricing of more exotic instruments. 
 
1.3 Related Literature 
 

The deviation of observed market prices for options from their theoretical 
counterparts as given by the Black-Scholes formula has triggered a large literature in 
which both academics and practitioners alike have tried to improve on the limitations 
of the Black Scholes model. 

One strand of the literature concentrates on the implied tree approach. The aim 
is to keep as closely as possible to the Black-Scholes setup while exactly reproducing 
the option prices given in the market. This is achieved by specifying a time and state 
dependent volatility function which does not contain any additional random 
component. Models of this type are by Rubinstein (1995), Derman and Kani (1994), 
Derman et.al. (1996) and Dupire (1994). 

While exactly reproducing the option prices observed in the market the 
implied volatility models have the drawback that they do not allow for idiosyncratic 
stochastic dynamics in the option prices. This is in conflict with empirical observation 
and with the continuous updating of the new information reflected in the option 
prices. The poor results in a hedging test performed by Dumas et.al. (1999) are 
probably also due to this drawback. Dupire (1996) took a first step towards 
incorporating stochastic dynamics into the term structure of volatilities, but again he 
models realized volatilities and forward contracts on it, and not implied volatilities 
from options prices. 

Derman and Kani (1998) extended their implied tree approach to allow for 
stochastic dynamics in the full term and strike structure of implied local volatilities. 
They derive restrictions on the drift of the local volatilities that are necessary for 
absence of arbitrage, and these restrictions involve integrals over all possible 
underlying prices and times before the maturity of the forward volatility concerned. 
The complexity of these restrictions makes the model hard to handle and we are going 
to propose a slightly different approach. Furthermore it is not obvious how in Derman 
and Kani’s model it is ensured that the implied volatilities satisfy certain no-arbitrage 
restrictions as expiry is approached. The fundamental problem is, that Derman and 
Kani specify two things that may be contradictory: the dynamics of the spot volatility 
and the implied volatilities for different strike prices and maturities. 

The development of local volatility models by Dupire (1994), and Derman-
Kani (1996) was a major advance in handling smiles and skews. Local volatility 
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models are self-consistent, arbitrage-free, and can be calibrated to precisely match 
observed market smiles and skews. Currently these models are still used for managing 
smile and skew risk. However, the dynamic behavior of smiles and skews predicted 
by local vol models is exactly opposite of the behavior observed in the marketplace: 
when the price of the underlying asset decreases, local vol models predict that the 
smile shifts to higher prices; when the price increases, these models predict that the 
smile shifts to lower prices. In reality, exchange rates and market smiles move in the 
same direction. This contradiction between the model and the marketplace tends to 
de-stabilize the delta and vega hedges derived from local volatility models, and often 
these hedges perform worse than the naive Black-Scholes’ hedges. 

We will follow an approach for modeling fundamental quantities like the 
stochastic process of the volatility of the underlying as in the traditional stochastic 
volatility models of Hull (1987), Heston (1993) or Stein and Stein (1991). This 
facilitates the fitting of the model to observed option prices and gives the model a 
larger degree of flexibility. 

Using a model based approach means that we do not use the market-based 
approach applied to the term structure of implied volatilities which is similar to the 
market models of the term structure of interest rates by Miltersen, Sandmann and 
Sondermann (1995), Brace, Gatarek and Musiela (1997) and Jamshidian (1997). Nor 
do we model the instantaneous conditional forward volatilities as in the effective 
volatility model by Derman and Kani (1998), or forward variances like in Dupire 
(1992) or model the Black-Scholes implied volatilities. 

Another direction of research has been on the nature of the underlying price 
process which was assumed to be a lognormal Brownian motion by Black and 
Scholes. Well known papers of this approach are by Hull (1987), Heston (1993), or 
Stein and Stein (1991) as discussed earlier. 

The approach taken here draws upon both the strands of research thus far. We 
model the instantaneous volatility of exchange rates rather than implied volatilities as 
in the market models. We also incorporate stochasticity in the underlying volatility 
i.e. volatility of the underlying is assumed to be uncertain as is observed in the 
market. 

Some of the constraints of our model are that though they reproduce the 
typical shapes of implied volatilities observed in the markets known as the smile, they 
need to be calibrated to the benchmark options, i.e. they are computationally intensive 
and there is no closed form solution for calculating option price. Another constraint is 
that this model has only one additional factor driving the stochastic volatility and 
cannot be extended to the multi-factor case. 

In what follows we briefly present the models that are currently used in 
foreign exchange options: the famous Black-Scholes model, the Q-Φ model and the 
Stochastic Q-Φ model, and compare the results obtained from each of these models. 
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2 The Black-Scholes Model 
 

We first introduce the Black-Scholes Model 
 
2.1 Spot Dynamics and the Local Volatility 
 

The Black-Scholes (1973) approach towards the probability density is 
straightforward. The basic assumption is that the exchange rate follows a lognormal 
stochastic process: 

t
t

t dWdt
S

dS
** σµ +=     (3) 
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Fig. 2. The Lognormal Stochastic Process. The blue line shows a simulated path for 
the first 10 days of an exchange rate according to equation (3). Initial spot S0= 100, 
volatility σ = 10% and drift µ = 1%. The pink line shows the drift only, i.e. the 
deterministic part of equation (3). The double-arrows indicate the size of the spot 
move dS in the second time step. 
 

The relative move of spot dSt/St over the next time interval dt is given by a 
deterministic part, the so-called drift term µ*dt and a random term σ*dWt . The drift 
term is given by the difference of the numeraire and asset interest rates: µ*dt = (rnum – 
rass)*dt. The random part is driven by dtdWt *ε= , where ε is a random number 
that is drawn from a standard normal distribution N(0,1). The model parameter that 
governs the dynamics of the Black-Scholes model is the local or instantaneous 
volatilityσ . 

We are interested in the distribution of spot at maturity of the option. So we 
perform a Monte Carlo simulation to create it. Draw a random numberε  from our 
standard normal distribution N(0,1), plug it into equation (3) and determine the new 
spot St+1 = St + dSt, which is the starting point for the next time interval dt. If we 
repeat this procedure until we reach the expiry date of the option we generate a single 
random path of spot from today’s date to expiry date. A knockout barrier is taken into 
account by stopping any path that touches this level. The information of the outcome 
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of St for many paths created in the same way provides us with a frequency distribution 
of outcomes of spot at expiry. After normalisation, i.e. division by the number of 
launched paths, we obtain the probability distribution of spot at expiry. 
 
2.2 The Implied or Black-Scholes Volatility 
 

In a Black-Scholes world, instead of running a tedious Monte Carlo simulation 
we can directly solve the stochastic partial differential equation (3) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= tBS

BS
t WtSS σ

σ
µ

2
exp*

2

0     (4) 

Equation (4) allows jumping a macroscopic time step t, e.g. t = expiry date, 
rather than only microscopic steps of the size dt. σBS is the implied or Black-Scholes 
volatility. As ε is from N(0,1), tW BStBS εσσ = is distributed ( )tN BS

2,0 σ , i.e. 

normally distributed with standard deviation tBSσ  and zero mean. Taking the 
logarithm of equation (4) shows why the Black-Scholes model is also known as the 
lognormal model. 

t
BSt Wt
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S

σ
σ

µ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2

ln
2

0

     (5) 

Equation (5) tells us that ( )0ln SSt  is normally distributed with mean 

22
BSσµ −  and standard deviation tBSσ , i.e. ( )tN BSBS

22 ,2 σσµ − . A simple 
transformation results in the PDF of St . The Black-Scholes or implied volatility σBS is 
a tenor volatility whereas σ is only valid for the next infinitesimal time step. In the 
Black-Scholes world these two volatilities numerically agree, i.e. σ = σBS , however, 
these volatilities are two different parameters as will become more evident when we 
consider more sophisticated models. 

The derivation of the PDF of St given that the spot did not touch the barrier on 
its path is a bit more cumbersome but the point to be made is that we arrive at a 
probability density function for spot at maturity using a single model parameter σ. 
 
2.3 Calibration 
 

The calibration of the Black-Scholes model is simple. We determine σBS (=σ) 
such that the Black-Scholes price of an option is equal to the market price of this 
option. The standard practice in the market is to choose ATMF (at-the-money-
forward) and 25-Delta Call and Put strike options for calibration. 
 
2.4 Pricing 
 

Pricing in the Black-Scholes world is simple too. For most option products we 
can provide an analytical formula for the integral of the product of probability times 
payoff. This makes implementation of the algorithms fast and robust. 
 
2.5 No Smile 
 

For a given tenor the volatility smile is defined as the implied volatility as a 
function of strike. Thus, per construction, the Black-Scholes model does not exhibit 
any smile, i.e., the function σBS(K) = σBS is constant. 
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3 The Q-Φ Model 
 
3.1 Spot Dynamics and the Local Volatility 
 

The Q-Φ model allows for interest rates and hence the drift term to be time 
dependent. More importantly, however, the local volatility is assumed to depend on 
spot and time. 
 

( ) ( ) t
t

t dWtSdtt
S

dS
*,* σµ +=    (6) 

 
Some Wall Street houses incorporate this temporal information in order to 

price path-dependent options. However, the dependence of implied volatility on the 
strike, for a given maturity known as the Smile effect, is trickier. Many researchers 
have attempted to enrich the Black-Scholes model to compute a theoretical smile. 
Unfortunately they have to introduce a non-traded source of risk, jumps in the case of 
Merton (1976) and stochastic volatility in the case of Hull and White (1987), thus 
losing the completeness of the model. Completeness is of high value since it allows 
for arbitrage pricing and hedging. 

If we look carefully, the process in the equation above looks very similar to 
the lognormal process of the Black-Scholes model that we introduced in equation (3). 
Yet as we simply allow the local volatility to depend on spot and time we are able to 
capture today’s volatility smile. For option pricing we could again recourse to the 
Monte Carlo technique as described before for the Black-Scholes model. Draw a 
random numberε  from N(0,1), plug it into equation (6) and determine the new spot 
St+1 = St + dSt. However, to do so, we require the values of the local volatility for 
each attainable time and spot level, the so-called local volatility surface. 
 
3.2 The Local Volatility Surface 
 

The Q-Φ model does not provide an analytic function for σ(S,t). Rather we 
can derive an equation that relates the local volatility to the derivatives of the option 
prices with respect to strike and time. 

( )
( ) ( )
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2
2

2
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2
1

***
,

K
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CCTr
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∂
∂
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∂

+
∂
∂

−
=

µ
σ    (7) 

where C denotes the price of a Call option with tenor T and strike K. If we knew 
option prices for all tenors and strikes, we could numerically work out the derivatives 
in equation (7) and determine the local volatilities. In fact, this is the route that is 
taken. 

Obviously, we need to know how the Q-Φ model computes vanilla option 
prices. They are computed as the average of two Black-Scholes prices. 

( ) ( )( 212
1 σσ BSBSC += )     (8) 

BS( ) denotes the Black-Scholes option pricing formula and the two implied 
volatilities are given by 
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( ) ( ) ( ) ⎟
⎠

⎞
⎜
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⎛
⎟
⎠
⎞

⎜
⎝
⎛Φ−=

K
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TTQTATMF ln*1*
2

1 mσσ   (9) 

Equation (8) and (9) can be interpreted in a simple way: The Q-Φ model 
assumes a two-point distribution for volatility. For a given strike K the volatility will 
be either σ1 or σ2 with probability 1/2.  The meaning of the model parameters Q and Φ 
is explained later. 
 
3.3 Calibration 
 

We calibrate the model against the market prices for three options, ATMF, 25-
delta Calls and Puts. We have to fit the three parameters of the model, σATMF, Q, and 
Φ, such that the Q-Φ prices i.e., equation (8) match the market prices. Using equations 
(8) and (9) yields vanilla option prices for all tenors and strikes and equation (7) 
provides us with the volatility surface. 
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Fig. 3. Q-Φ Local Volatility Surface as a Function of Time and Spot. The graph above 
is generated with the Q-Φ model. It shows a 6M local volatility surface. We use an 
initial spot of S0 = 100, 6M ATMF volatility σATMF = 13.5%, strangle Str = 0.5% and 
risk reversal RR = 2% for Puts. The calibration returned Q = 0.36 and Φ = -1.21. 
 
3.4 Pricing 
 

The volatility surface is fed into a Monte Carlo simulation or a finite 
difference grid to price exotic options consistent with the vanilla market. Apart from 
vanilla options, for which we can recourse to equation (8) there is no analytical 
solution for Q-Φ option prices. 
 
3.5 The Use of the Wrong Number 
 

The implied volatility is the parameter that we have to plug into the Black-
Scholes formula to obtain the market price of an option. For the Q-Φ model there is 
no obvious connection between the local volatility and this implied volatility. The 
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local volatility surface contains the full information about today’s smile. We can use 
this surface to correctly and consistently price any vanilla or exotic option. The 
implied volatility, in contrast, is simply the wrong number to be put into the wrong 
formula to get the vanilla prices right. However, using the knowingly wrong Black-
Scholes formula allows market participants to express the smile in a standardised way 
in two single numbers: the strangle and the risk reversal. 
 
3.6 Smile 
 

We can easily relate Q and Φ to strangle and risk reversal. As we will show Φ 
introduces some asymmetry to the model while Q creates a symmetric smile. 
 

A positive Φ tends to increase both, σ1 and σ2 and for options with K>F, i.e. 
OTM calls, and decreases both for options with K>F. Thus a positive Φ corresponds 
to a risk reversal that favours calls. Obviously, Φ does not have any impact on the 
price of ATMF options as ( KFln ) in equation (9) vanishes in that case. 
 

Equation (8) and (9) show that Q does not affect the price of an ATMF option 
while it does so for an OTM option. Look at an option’s Vega to understand this 
result. Vega as a function of volatility is fairly constant for ATMF options, i.e. ATMF 
options have zero Vomma2. In other words, the price of an ATMF option is an almost 
linear function of volatility and we have  

 
ATMF:  ( ) ( )( ) ( )( ) ( ATMFBSBSBSBSC )σσσσσ =+≈+= 2121 *21*21  
 

In contrast, for OTM options Vega increases with rising volatility, i.e. they 
have positive Vomma. Alternatively, we say that the price of an OTM option is a 
convex function3 of volatility. Thus for  

 
OTM:  ( ) ( )( ) ( )( )2121 *21*21 σσσσ +≥+= BSBSBSC  
 

Apparently, Q makes OTM options more expensive, that is, Q can be related to 
the strangle. 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
2 Vomma is the second derivative of the options price C with respect to volatility 

22 σ∂∂ C , it 
describes the curvature of the options price as a function of volatility.  
3 For a convex function c we have ( ) ( )( ) ( )( )22 yxcycxc +≥+  
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4 The Stochastic Q-Φ model 
 

We provide the formulation and dynamics of the stochastic Q-Φ model. 
 
4.1 Spot and Volatility Dynamics 
 

The Stochastic Q-Φ model assumes the following dynamics for the exchange 
rate. 
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The random term for the exchange rate in equation (10a) is similar to the one 

that we have seen in the Q-Φ model. Here, the analytical function ( )tSf tt ,*σ  
determines the local volatility surface. However, in the stochastic model the volatility 
itself is a random process with no drift and a volatility (of volatility) ξ . 

The model has four parameters: 0σ , α , β , andξ . 0σ is the initial value for 
the volatility. We will understand the meaning of the other parameters in what 
follows. 

We use the Monte Carlo approach to investigate on the dynamics of equations 
(10a) and (10b). We first draw a random numberε , plug it into equation (10a) to 
determine the spot after the first time step ttt dSSS +=+1 . Before continuing with the 
next time step, however, we have to draw a random number κ , plug it into equation 
(10b) to obtain the correct parameter ttt dσσσ +=+1 to be used for the second time 
step and so on. As far as the local volatility surface is concerned, the Q-Φ model is 
fully deterministic. In contrast, in the stochastic Q-Φ model we can only predict the 
local volatility for an arbitrary point in the future in a probabilistic sense. We could 
say that the stochastic volatility process in equation (10b) vibrates the deterministic 
function ( )tSf tt ,*σ  in a random manner. Note that this isn’t exact in a mathematical 
sense but it is a useful way of looking at the mechanics. 

We approach the full complexity of the model by first considering two special 
cases of the stochastic Q-Φ model, the Quasi Q-Φ model ( )0=ξ and the purely 
stochastic model ( )0=β . 
 
4.2 The Quasi Q-Φ Model 
 

Suppose that the volatility of volatility vanishes ( )0=ξ . This means that 
volatility itself is not a random variable. In this case the smile is fully deterministic. 
The local volatility surface is given by ( )tSf tt ,*σ . The model becomes similar to the 
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Q-Φ approach (Compare equations (6) and (10a)).  The strangle is reflected 
in β which creates a parabolic, symmetric local volatility surface around spot. The 
asymmetry of the smile, i.e. the risk reversal, is created by α . We have to calibrate 

0σ , α , and β such that the market prices of three options, ATMF,  Calls and 
Puts, are matched. 
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Fig. 4. Stochastic Q-Φ Local Volatility Surface. The graph above is generated with 
the stochastic Q-Φ model with vanishing volatility of volatility ( 0= )ξ . For the 
example we used an initial spot of 1000 =S , 6M ATMF volatility %5.13=ATMFσ , 
strangle and %5.0=Str %2=RR for Puts. The calibration returned 

%67.120 =σ , 27.0=β and 35.1−=α . 
 
4.3 Q-Φ versus Quasi Q-Φ model 
 

Compare the graphs of the local volatility in figures 3 and 4. Both surfaces 
were fitted to the same smile. In spite of the fact that they appear to be very different 
there is no contradiction here. The local volatility surface is not directly observable in 
the market. Rather the surface is implied and interpolated from three market 
observations only, the prices of a 6M ATMF option and a 6M ∆25  Call and Put. In 
fact the two models agree on the prices of these three options using the respective 
local volatility surfaces. This is a trivial result as this is simply an inversion of the 
calibration process. To understand in which case the models would give different 
results, consider the earlier Monte Carlo simulation exercise. Each path starts at , 
i.e. at the front of figure 3 or 4 and runs in a random zigzag line to the back of the 
graph. Along its way we pick up local volatilities and apply them to calculate the next 
random shock for the spot. Consider a one-touch option. A path set out to run on the 
surface of figure 3 presumably experiences a different probability to touch the trigger 
than a path running on the surface of figure 4. To summarise, two different models 
will naturally agree on the prices of the vanilla products that are used for the 
calibration. But they may give different answers, albeit the difference may be small, 

0=t
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for products with different payoff functions, in particular path dependent options, 
such as knockouts and one touch options. 
 
4.4 Pure Stochastic Model 
 

Assume next that 0=β  but 0>ξ .  In this case the risk reversal is still 
created byα . The strangle, however, is created by the stochastic nature of the 
volatility. In our simplified picture of the stochastic model the local volatility vibrates 
with an intensity proportional to the volatility of volatility. Thus, products with 
positive Vomma, such as OTM options, will become more expensive. Accordingly, 
the deterministic volatility surface has a nonzero slope to account for the risk reversal 
but does not exhibit any curvature (see figure 5). We have to calibrate 0σ , α , andξ  
to the usual set of market prices: ATMF, ∆25  Calls and Puts. 
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Fig. 5. Stochastic Q-Φ Local Volatility Surface. The graph above is generated with 
the stochastic Q-Φ model with vanishing β  with similar parameters as before. The 
calibration returned %68.120 =σ , and 22.2−=α , and %93=ξ . 
 
4.5 Purely Stochastic versus Quasi Q-Φ 
 

What are the differences between the purely stochastic model and the Quasi 
Q-Φ model. To work one out, we put ourself at the starting point of a Monte Carlo 
simulation, i.e. at and . Suppose that after a short period of time, say, a 
couple of days, the random shocks bring spot down to 95. We consider the view on 
the volatility surface ahead with spot at 95. For the surfaces in figure 4 the landscape 
will be tilted, i.e. the Quasi Q-Φ model increases the risk reversal when spot moves 
down. In contrast, the slope of the surface in figure 5 remains unchanged, i.e. the 
stochastic model predicts that the risk reversal does not change at all. 

0=t 1000 =S

Another major difference is due to the nature of the purely stochastic model. 
As mentioned above, due to the stochastic nature of volatility the model will mark up 
all positive Vomma products. In contrast, the Quasi Q-Φ model assumes a 

 
12



deterministic, i.e. static local volatility. It cannot capture the benefit of positive 
Vomma. As an example, the price of a range binary will be higher if the purely 
stochastic model is used as compared to the Quasi Q-Φ model. 
 
4.6 Stochastic Q-Φ or The Mix 
 

As described above, we either generate a smile by means of a purely 
deterministic local volatility surface or we use a deterministic risk reversal combined 
with a stochastic volatility process. Both approaches are consistent with the market, 
i.e. ATMF,  Calls and Puts, so we cannot determine which approach is the 
correct one. Additional market information is required to find the most appropriate 
model. 

∆25

A purely deterministic volatility surface entails that the risk reversal changes 
quickly when spot moves, whereas in a purely stochastic model the smile shifts 
sideways, i.e. if the risk reversal does not change at all when spot moves. Thus, if we 
combine the two approaches, via the ‘mix ratio’ we can control our model’s implied 
change in risk reversal with a change in spot. In fact we fit the four parameters of the 
full model, 0σ , α , β , andξ  such that we match ATMF, ∆25  Calls and Puts and the 
speed of the risk reversal with a change in spot. 
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Fig. 6. Stochastic Q-Φ Local Volatility Surface. The graph above is generated with 
the stochastic Q-Φ model. For the example we fitted the model to an initial spot of 

, 6M ATMF volatility1000 =S %5.13=ATMFσ , strangle %5.0=Str , for 
Puts, and change of risk reversal per  move down in spot of  The 
calibration returned 

%2=RR
%1 %10.0

%65.120 =σ , and 08.2−=α , %5=β , and %82=ξ . 
 

β is the only model parameter that is sensitive to the speed of risk reversal. 
Thus, in a simplified picture, we would start the model’s calibration by fitting β such 
that it generates the market’s speed of risk reversal. At the same time, β accounts for 
the curvature of the local volatility surface in figure 6. However, the curvature is less 
pronounced as compared to the one of the surface in figure 4. This means that the 
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strangle due to β is too small. We have to use the second handle that the model offers, 
the volatility of volatility ξ, to create the residual strangle. Note that ξ is smaller (ξ = 
82%) as compared to the calibration result in the purely stochastic model (ξ = 93%). 
This is due to the fact that a part of the market strangle is already created by β. 

The table below summarises the relationship of the model parameters to the 
market observations. 
 
Table 1. Relationship of model parameters to at-the-money-forward options, risk-
reversals, stranges and speed of risk-reversal. 

 ATMF Risk Reversal Strangle 
Speed of Risk 
Reversal 

σ0 +    
Α  +   
Β   + + 
Ξ   +  

 
4.7 Pricing 
 

To price exotic options with the stochastic Q-Φ model we can again use a 
Monte Carlo simulation or a finite difference grid. The stochastic nature of the 
volatility adds another dimension to the problem. In the implementation, the 
algorithm must not only account for the spot moving up or down but also that the 
local volatility experiences random shocks. Thus, if we are to build a finite difference 
grid, we have to construct a cube with the axes time, spot and volatility. Note that for 
the Q-Φ or the Quasi Q-Φ model it is sufficient to provide a two-dimensional grid 
with the axes spot and time, thus making it easy to implement. 
 
5 Pricing example 
 

The table below summarises the prices of a  range binary. 
, ATMF volatility

0.90/0.110 M6
1000 =S %5.13=ATMFσ , strangle %5.0=Str , for Puts, 

and change of risk reversal per  move down in spot of  using the different 
approaches presented above. 

%2=RR
%1 %10.0

As the range binary exhibits a positive Vomma the price based on the purely 
stochastic model is highest, followed by the Stochastic Q-Φ (The Mix), which, even 
though smaller, still has a stochastic volatility component and finally Quasi Q-Φ, 
where volatility is assumed to be purely deterministic. 

We observe that the speed of risk reversal which is implied by the Quasi Q-Φ 
model is much higher than the that is historically seen in the market. %10.0
 
Table 2. Prices of range binaries for the various models considered. 

 BS Quasi Q-Φ 
Purely 
Stochastic 

Stochastic Q-
Φ 

Price 39.7% 42.0% 48.6% 47.5% 
Speed of risk reversal -- 0.42% 0.0% 0.10% 

 
 
 

 
14



6 Conclusions 
 

In this paper, we propose a new class of models (Q-Φ), that captures both 
stochastic volatility and skewness. The models we propose are highly tractable for 
pricing and risk management. The model parameters are such that they can be hedged 
using the standard strangles and risk reversals traded in the market. The model allows 
for easy implementation and the pricing speed is good which is a key aspect for 
trading and risk management. 
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