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This paper is concerned with the efficient numerical computation of static Value-at-Risk (VaR)
for portfolios of assets depending quadratically on a large number of risk factors Xt = (X1,t, · · · , Xn+1,t)
(t representing time), under the assumption that Xt follows a Generalized Laplace Distribution or
GLD. Our approach is designed to supplement the usual Monte-Carlo techniques, by providing an
asymptotic formula for the quadratic portfolio’s cumulative distribution function, together with
explicit error-estimates. The basic philosophy is the same as in Brummelhuis, Cordoba, Quintanilla
and Seco [1], where such an asymptotic formula was derived in the case of normally distributed risk
factors. Here the result of [1] will be extended to a class of non-Gaussian Xt’s, and even slightly im-
proved upon in the normal case). More importantly, the asymptotic formula will be supplemented
with estimates for the error-term, which were lacking in [1]. This will allow us to establish a rigorous
interval in which the true quadratic VaR will lie, rather than just give an approximation which is
asymptotically exact when the VaR confidence parameter tends to 1.

The typical way in which quadratic portfolios arise in practice are as a Γ −∆ approximations
of more complicated portfolios with some non-linear value function Π(X1,t, · · · , Xn+1,t, t). We will
make the additional assumption that Π is delta-hedged at t = 0. The restriction to ∆-hedged
portfolios is mainly made for computational simplicity, but note that these include the in practice
very important class of hedging portfolios made up of derivatives and their underlying. In such
a case, letting Sj,t be the time-t price of the j-th underlying asset, we would typically take the
log-return Xj,t = log(Sj,t/Sj,0) as the j-th risk factor. The numerical example we consider at the
end of the paper will be of this kind. A further assumption we will make is that Xt has zero mean,
which in practice will be approximately satisfied on small time-scales t. We stress, however, that all
results of this paper can be extended to general, non-hedged, quadratic portfolios with Xt having a
non-zero mean. But, we decided to postpone the more general case to a future paper, and first test
our approach on the ∆-hedged case.

Why would one want to derive explicit analytic approximations to a portfolio’s VaR when
simple Monte Carlo will in principle compute this with any given precision? There are in fact
a number of good reasons for wanting to do so. First of all, Monte Carlo, even when combined
with various variance reduction and/or importance sampling techniques, can be notoriously slow
for large portfolios. By contrast, explicit analytical expressions can in general be computed almost
instantaneously, and would allow for real-time VaR evaluation. Doing this by Monte Carlo would
involve massive computations, and therefore likely to be unfeasible in practice. On the other hand,
explicit analytical expressions, even if approximate or providing bounds only, will easily permit such
an analysis.
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To begin describing our main results, consider a portfolio with non-linear Profit and Loss (or
P & L) function2 Π = Π(x1, · · · , xn+1, t) over the time-interval [0, t]. In particular, Π(0, 0) = 0,
assuming (without loss of generality) that X0 = 0. We suppose moreover that ∇Π(0, 0) = 0. When
t > 0 is some small fixed later time (typically of the order of 1 day, or 1/252 in the natural unit of
one financial year), To compute VaR, we need to know the P&L’s cdf

(1) FΠt(x) = P ( Π(Xt, t) < x ) ,

P standing for the objective probability. Since the distribution function (1) is in general impossible to
evaluate analytically, and, for big n and complicate Π(x1, · · · , xn+1, t), time-consuming to compute
numerically by Monte Carlo, one usually performs a preliminary quadratic approximation:

Π(X) ' Θ t +
1

2
XtΓXt

t(2)

= Θ t +
1

2

∑
j,k

ΓijXiXj,

where there is no linear term since Π is assumed to be ∆-hedged. Here, and below, we will use the fol-
lowing notational conventions for vectors and matrices: x = (x1, · · · , xn+1) and X = (X1, · · · , Xn+1)
will designate row vectors, and their transposes xt, Xt will therefore be column vectors, on which
matrices like Γ = (Γij)i,j act by left multiplication As of now we assume that Xt has probability

density of the form:

(3) fXt(x) =
Cα,n+1√
det (V(t))

exp
(
−cα,n+1(xV(t)xt)α/2

)
,

where α > 0 and where V(t) is a positive definite matrix; V(t) will precisely be Xt’s variance-
covariance matrix, provided we choose the normalization constants Cα,n+1 and cα,n+1.

The Value-at-Risk at (risk-managerial) confidence level 1− p is defined by

(4) VaRΠt
p = sup{V : FΠt(−V ) ≥ p}.

We will assume that a reasonable approximation to VaRp will be given by the quadratic or Γ-
Value-at-Risk, VaRΓt

p , defined as in (4), but with FΠt replaced by

(5) FΓt(−V ) = P( Θt +
1

2
Xt Γ Xt

t ≤ −V ).

In our case, the distribution function FΓ will be strictly increasing, so the definition of Γ-VaR
simplifies to F−1

Γt
(p). In [5] we have proved that

VaRΠt
p /VaRΓt

p → 1, t → 0,

with an error which is O(
√

t). Also observe that if for example Π(x, t) ≥ Θt + 1
2
xΓxt for all x, then

of course VaRΠt
p ≤ VaRΓt

p , and similarly with all inequality signs reversed. From now on, we will

2we use the P & L rather than the value function; this is of course just a question of normalization
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take t sufficiently small but fixed, and make no distinction any more between VaRΠt
p and VaRΓt

p ,
that is, we will effectively suppose that Π(x, t) is a quadratic ∆-hedged portfolio.

Our main task will then be to compute FΓ(−V ), or more precisely its inverse. This is still a
non-trivial problem if we are looking for an analytic solution (which we are, for though Monte Carlo
works faster for quadratic portfolios, it will still be slow if the portfolio is big). Our strategy will be
to approximate FΓ(−V ) for large values of V by an explicit analytic expression, with explicit error
bounds. This will then allow an approximate inversion.

The main theorem can be used as follows to solve our initial problem of finding good approxima-
tions and bounds for VaRΓ

p . Let us define the principal component Γ-VaR of our quadratic portfolio

as the unique solution V = VaRΓ,pc
p of the equation

(6) FΓ,pc

(
c
1/α
α,n+1

√
2(V + Θ)

)
= p.

Theorem ?? then suggests, as a first approximation,

VaRΓ
p ' VaRΓ,pc

p ,

a relation which is asymptotically exact as p → 0. For a given small but non-zero p > 0 this is, as
it stands, just an uncontrolled approximation, but we can use the error bounds of theorem ?? to
determine a rigorous interval in which VaRΓ

p must lie. For a given p ∈ (0, 1), let RL = RL(p) and
RU = RU(p) solve, respectively:

(7) FΓ,pc(RL)− EL(RL) = p,

and

(8) FΓ,pc(RL) + EU(RU) = p.

Put

(9) Vj(p) :=
1

2
c
−2/α
α,n+1Rj(p)2 −Θ, j = L, U.

Since the lower bound (??) holds for all R > 0, we will always have that VL(p) ≤ VaRΓ
p . On the

other hand, VaRΓ
p ≤ VU(p) will only hold once we know that cn+1,α2α/2

(
VaRΓ

p + Θ
)α/2 ≥ λ0. This

will certainly be satisfied if we choose:

(10) λ0 = RL(p)α

Summarizing, we then have the following estimate on quadratic VaR:

Corollary 0.1 For a given choice of parameters p, a, γ ∈ (0, 1) let λ0 = RL(p)α, where RL(p) is the
solution of (7). Furthermore, for given ε ∈ (0, 1), let RU(p) be the solution of (8)3. Let VL(p), VU(p)
be defined by (9). Then:

VaRΓ
p ∈ [VL(p), VU(p)].

3that is, with this choice of parameters in the expressions for EL(R), EU (R)
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4


