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Abstract Using Malliavin calculus techniques, we derive an anagjftiormula for
the price of European options, for any model including logahtility and Poisson
jump process. We show that the accuracy of the formula depemthe smoothness
of the payoff function. Our approach relies on an asymptexigansion related to
small diffusion and small jump frequency/size. Our formiiés excellent accuracy
(the error on implied Black-Scholes volatilities for cafiton is smaller than 2 bp for
various strikes and maturities). Additionally, model badition becomes very rapid.
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1 Introduction

The standard Black-Scholes formula (1973) was derived utide assumption of
lognormal diffusion with constant volatility to price caldnd puts. However, this hy-
pothesis is unrealistic under real market conditions beeae need to use different
volatilities to equate different option striké&sand maturitiesT . Market data shows
that the shape of the implied volatilities takes the form efrdle or a skew.

In order to fit the smile or the skew, Dupire (in [Dup94]) anddistein (in
[Rub94]) use a local volatilityjec(t, f) depending on timé and statef to fit the
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market. This hypothesis is interesting for hedging becéumsaintains the complete-
ness of the market. However, in a few cases [ACCLO01], one lmsed formulas. In

the case of homogeneous volatility, singular perturbagehniques in [HW99] have
been used to obtain asymptotic expression for the pricerflaaptions (call, put).

Other cases have been derived using an asymptotic expasfdioa heat kernel for
short maturity (see [Lab05]).

But Andersen and Andreasen in [AA0O] show that this sole mggion of lo-
cal volatility is not compatible with empirical evidenceffinstance, the post-crash
of implied volatility of the S&P500 index). Hence, they dexd a model with local
volatility plus a jump process to fit the smile (we write it AAatkel). Their model
may be seen as a perturbation of pure local volatility modefscourse, this is not
the only alternative modellifg The AA model fits some market data well (see cali-
bration results in [AA0Q] and those in this work), although are aware that it does
not work systematically nicely. In the following, we do nasclss the relevance of
this model in specific situations. We simply focus on this elad order to illustrate
our new approach for numerical pricing and fast calibratior an analogous study
on the time dependent Heston model, we refer to our work ipgragion [BGMO08].
Andersen and Andreasen [AAOQQ] calibrate their model byisglthe equivalent for-
ward PIDE. This sort of problem could be handled numericadling: an ADI-FFT
scheme in [AA0O], a Finite Element Method in [MvPS04], an leipimplicit PIDE-
FFT method for general Lévy processes in [CV05] or PrediCarrector methods to
improve the accuracy of the PIDE in [BMO06]. In the best cadiegfahese methods
lead to a time of calibration of roughly one minute (see [AB0Can we reduce this
computational time? Is it possible to reach a time of catibreas short as the com-
putational time of a closed formula such as Merton’s [MeP/®lr present research
responds positively to the above questions.

In order to handle even more general situations we condimfethe one dimen-
sional underlying state process, the solution of the statahdifferential equation
(SDE):

dX = o(t, X )dW + p(t, X-)dt+dd, Xo=>Xo. (1.1)

Forinstance one may think ¢X;); as the log asset price. HeMt )o<t<T is a standard
real Brownian motion on a filtered probability spac®,.#, (%t )o<t<T,P) with the
usual assumption on the filtratidi¥#; )o<t<t and (% )o<t<T iS @ compound Poisson
process independent ¢ ); defined by:} = ZiN;lYi whereN; is a counting Pois-
son process with constant jump intensityand (Y )icn+ are i.i.d. normal variables
with meann; and volatility y;. Our main objective is to give an accurate analytic
approximation of the expected payoff (or fair price of thigion)

E(h(Xr))

for a given terminal functioh and for a fixed maturityl.
The approximation can be applied to the following models:

1 for instance, see the book by Lewis [Lew00] on stochastiatiliy models or the one by Gatheral
[Gat06] on models explaining the volatility surface.
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Example 1.1 AA model on the log-asset.
In this case(X): is the logarithm of the underlying asset(t, x) is its local volatility

andu(t,x)=A(1- et )— @ in order to guarantee the martingale property for
(€%),. For a call exercised at maturify with strikeK, h(x) = e~ /o "(Wdt(glg (r(W)-a(u)dugx _
K)+ wherer is the deterministic risk-free rate term agds the deterministic divi-
dend term. This model was derived in [AA0OQ]. In this work weinta focus our
discussion on this model.

Example 1.2 Jump diffusion model on the asset.

(%)t is the forward contract with maturity, o(t,x) is its volatility andu(t,x) =
—Any. For a call exercised at maturity Ti(x) = e~/ WdU(x — K),.. The primary
focus of this model is the implied normal volatility insteaitstandard implied Black-
Scholes volatility (Japanese markets in [HKLWO02]) and dlirdes the presence of
price jumps.

Heuristics of our approximation and model proxy. In practice, at first glance, it is
reasonable to think th@X; ); (in the AA model) is approximated by a Merton model,
where the coefficients ando only depend on time. We denote this proxy ¢ );
and it is defined by

dXM = o (t,x0)dW + p(t, xo)dt+dd, X' =xo. (1.2)

This approximation can be justified by one of the followintyations.

i) The functiongu(-) ando(-) have small variations, which means thegt, %) ~
o(t,%p) and analogously fog.

ii) The diffusion component is small (i.64|» + |0| is small) and the jump com-
ponent as well (i.eA (|ns| + y3) is small, meaning that the jump frequency or
the jump size is small), which results M = %. This case is not equivalent to
situationi) because the functions may be small and yet have large varati

iii) Another obvious reason may be that the matuFifg small, leading tr = X.

The heuristicd) andii) are coherent with the parameter values taken in [AAQQ].
When the three conditions are carried out at the same timexyect our approx-
imation to become even more accurate. Note also that no juxsesci = 0) are
allowed. The above qualitative featuiigs@ndii) are encoded into quantitative con-
stantsMp, My andM; defined in (1.5) and will be discussed later in this work. The
above heuristic rule implies that

E(h(X7)) = E(h(XM)) +error.

The termE(h(XM)) is the price in the Merton proxy which is explicit (see Remark
2.2). But this sole approximation is too rough to be suffittieaccurate. Our work
consists of deriving correction terms for the above equatitattain a remarkably
good approximation.
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Smart expansion. To perform a rigorous analysis, we use a suitable pararzateri
tionw.r.t.e € [0,1]:

dX = e(0(t, %5 )dW + p(t, X5 )dt+dd), X§ = %o, (1.3)

so thatX! = X;.. We write
g(e) =E(h(Xf)) (1.4)

and our approach consists of expanding the price (1.4) wipect tce. But the ac-
curacy of the expansion is not relatedstbbecause the value of interest 1 is not
small. This is a significant difference as compared with glagperturbation tech-
nigues. Parameterization is just a tool to derive convemapresentations. By using
an asymptotic expansion in the context of small diffusioms small jumps (relative
to the frequency or to the size), we can establish estimdtdwealerivatives. This
allows us to make an explicit contribution at given order tmdontrol the error. This
is achieved by using the infinite dimensional analysis of Il@ih calculus. Here,
we focus our analysis on the first teffngor which we provide explicit formulas.
We also give explicit upper bounds of the errors for genemaht ofu(-) ando(-).
However, the smaller the parameters), a(-) andA (|ns| + ys) are, the smaller the
maturity T is, or the smaller the derivatives of the functiom§) and u1(-) w.r.t. the
second variable are, the more accurate the expansion isn@alistic parameters,
the accuracy is indeed very good (less tt2dp in implied volatilities for various
strikes and maturities). As a result of these expansiongraxe that the price (1.4)
in our general model (1.1) equals the price in the Merton rhplds a combination of
Greeks (still in the Merton model). Hence, numerical evadureof all these terms is
straightforward, with a computational cost equivalentite tlosed Merton formula.
The residual terms (otherwise stated as error) are also&stil and their amplitudes
depend on the smoothness of the payoff. We distinguish ttases: smooth, vanilla
(call, put) and binary payoffs. In practice, the vanillaeas likely to be the most
useful.

This is our main contribution. Furthermore, from the appmtation price we
observe that one may obtain a volatility smile for short mitigs (since we use the
Merton model as a proxy) and a volatility skew for long métas (due to local
volatility function).

Comparison with the literature. We refer in particular to Hagan et al. in [HKLWO02]
for the SABR model, to Fouque et al. in [FPS00] for stochastiatility models, or

to Antonelli-Scarletti in [ASO7]. In all these works, as @ged to our approach, a
perturbation analysis w.r.t. the volatility, the mean msi@n parameters, or the cor-
relation, is performed and this leads to writing the pric@asain term (essentially
a Black-Scholes price) plus an integral of Greeks over nitasr In the time homo-
geneous case, the authors successfully compute or apmtexthis integral, which
strongly relies on PDE arguments. In our case, we do not appade the underlying
PDE (or the related operator) but owing to Malliavin calajlwe directly focus on
the law of the random variablé; given Xy = Xg and not necessarily on the process

2 in the former version of this work, terms at any order haventsealyzed.
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for any initial condition. Thus, we are able to handle timbdmogeneous coeffi-
cients and jumps as well, without extra effort. This is a veignificant difference
from previous research.

Outline of the paper. In the following, we present some notations and assumptions
that will be used throughout the paper. Section 2 is aimedesgmting our methodol-
ogy in an heuristic way to approximate the expected cosbiRigs results are proved
in Section 5. In Section 3, we derive financial modeling cgusaces from these for-
mulas. These observations lead to justifying simplifiedicé®of the local volatility
(of the CEV type), to predict the form of all attainable srailgith their dynamics. In
Section 4, we first give a methodology for implementing thpragimation formula.
Secondly, we show how to efficiently use our formula for aalting the model using
a relevant algorithm. Finally, we detail numerical apgicas in calibration for real
market data using our simplified form of local volatility. Bection 5, we analyze the
amplitude of the correction and error terms of the approximnaformula; the anal-
ysis depends on the kinds of payoff (smooth payoff in Theosehy vanilla options
in Theorem 5.2, binary options in Theorem 5.4). In Appendixvé bring together
useful results to make our “smart expansion” explicit.

Notations used throughout the paper.
Differentiation. If these derivatives have a meaning, we write:

- L,U[(i)(x) = ’Z—ix‘fi(t,x) for every functiony of two variables.

- Xit= %,i le=o . These processes play a crucial role in the work that follows
— When there is no ambiguity, we simply writg = o (t,Xo), th = u(t,xo),at(') =

do

W(tvxo)vl‘lt(l) = %li{(tvxo)
The following definition is used to distinguish the payoffifitionsh.

Definition 1.3 As per usual, we define;’(R) as the space of real infinitely differ-
entiable functions with compact support (smooth payoffs). The sup-norm of the
functionhis denoted byh|.. We defines# as the space of functions with growth be-
ing at most exponential. In other words, a functiomelongs to7 if |h(x)| < c;e%2

for anyx, for two constants; andc;.

The following notation provides a convenient represeatetif the correction terms.

Definition 1.4 Greeks.Let Z be a random variable. Given a payoff functionwe
define tha'" Greek for the variabl& by the quantity (when it has a meaning) :

Greel(2) = w | <o

Given appropriate smoothness assumptions concemimge also has

Greek(z) = E[h()(Z)].
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Assumptions. In order to get accurate approximations, we may assume tledfi-c
cientso andu are smooth enough.

— Assumption (R4). The functionsz(-) and u(-) are continuously differentiable
w.r.t. X up to orderd. In addition, these functions and their derivatives are-uni
formly bounded.

The functions and their derivatives could be piecewiseinapts w.r.t. the time vari-
able, without changing the following approximation formsiand the following error
bounds.

The assumptioiR,) seems to be restrictive because one requines 1 (-) and
their derivatives w.r.tx to be bounded. On the one hand, this hypothesis is clearly
too strong for us to use in the derivation of our smart expamsndeed, the reader
may check that polynomial growth conditions are sufficiemtthis purpose. On the
other hand, assuming that the derivatives are bounded i& moce convenient for
explanation purposes. It enables us to state all our ertion@&®s purely in terms of
the following constants:

My = maxl§i§4(|a(?)|°°+ |I—1(i)|w)7
Mo = maXp<i<a(|0W e + [UV]e), (1.5)
My = [na| + ya.

M3, Mg andM; play complementary roles.

a) The constari¥l; is a measure of the norm of the derivatives (wx).bf the objec-
tive functionso(-) andu(-). All our error estimates (see Theorems 5.1-5.2-5.4)
are linear w.r.tM;, which corroborates the proxy intuition explained in it§m
The smaller the value d¥l; is, the closeX andXM are, and as a result, approx-
imation is increasingly accurate. At the lini; = 0, the initial model and the
proxy coincide & = XM) and our approximation formula becomes exact.

b) The constant®y andM; also include estimates of the amplitudesadf), u(-)
and of the jump components. All our error estimates also epa powers of
Mo andMj;. This mathematically justifies proxy intuitidi). The smalleMg and
M; are, the better the resulting accuracy.

In our next theorems, we also clarify the dependence of dimates regarding jump
frequencyd and maturityT, because as these parameters decrease, the approximation
becomes increasingly accurate.

To perform the infinitesimal analysis, we rely on smoothipesperties which are
not provided by the payoff functions, but rather by the lavhaf underlying stochas-
tic models (this is related to Malliavin calculus). The @alling ellipticity assumption
on volatility combined with(R,) guarantees these smoothness properties.

— Assumption (E). o does not vanish and for a positive constaat Gne has

O|o
1SLSCE
Oinf

wheredint = inf ) cr+ xr O (L, X).
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We also need to separate our analysis according to payotittmess. We thus divide
our analysis into three cases.

— Assumption (Hy). h belongs t&;°(R). This case corresponds to smooth payoffs.

— Assumption (Hy). h is almost everywhere differentiable. In addition, h at
belong to 7. This case corresponds to vanilla options (call, put).

— Assumption (Hs). h belongs to7#. This case includes binary options (digital).

2 Smart Taylor Development

In this section, we formally show how to replace the priti&(Xr)) by using that
found in the Merton modeE(h(XM)) with appropriate correction terms. Rigorous
justification of the following expansions is postponed tatim 5.

The initial trick of our smart expansion lies in the use ofplagameterized process
(XE)t for € € [0,1], defined in (1.3). Under assumptidiRs), almost surely for any,

X isC® w.r.t € (see Theorem 2.3 in [FK85]). If we P, = %(}i, we get

dXE, =0t (XE)dW + i (XE )dt+dd
T exE (O )W+ P (X)), XEg =0

From the definitions; ; = %ﬁik:o, ol = a0 (t,x0) andpy) = u0) (t, x), we easily
get

dXor =0, Xo,0 = Xo,
dxl,t :O-tdw+utdt+d\17 )(1’0207
dXor =2Xa; (AW + i Mdt),  Xo0=0.

Thus, the Merton model is obtained by the first order expansi¢ ate = 0:
Xo1 +X11 =X+ X171 = X

We now use the Taylor formula twice: first, i at the second order w.etaround
€ =0, second for smooth functidmat the first order w.rx aroundxy + Xy 1 = X%".
One gets:

XoT

EINOH] =Elh(io-+ Xu1 + 227 + )] = E[AO)] + BI04 22T 4.

Then, the pric&[h(Xr)] can be approximated by a summation of two terms :

— E[h(XM)]: The leading order which corresponds to the Merton price gB&e
whenA = 0) for the payoffh.
- E[h“)(X%")XZT‘T]: The correction term which is made explicit in the next thegor
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Theorem 2.1 (Main approximation price formula).
Suppose that the process data fulf{iy) and (E) and that the payoff function fulfills
one of the assumptiorfsl; ), (Hz) or (Hz). Then

E[h(X7)] =E[h(XM)] + iai; Greek (XM + iﬁi’TGreel{‘(Xy' +Y') + Error,
2.1)

where

T T o
0!1,T=/0 Ht(/t us~ds)dt,

T T T oD
az7T:~/0 (Ut(/t s ds)+ut(/t 0505 ds))dt,
T, T (1)
as’T:/o at(/t 0505’ ds)dt,
T
By1 ZAOJ/O tpy ' dt,
K
Bt :A/o t(yo™ + myaraM)dt,

T
Bat :/\VJ/O topo; ' dt,

Y’ is an independent copy of the variabl&®)icns -
In addition, estimates for the error terBrrorin the casegHs), (Hz) and (Hs) are
respectively given in Theorems 5.1, 5.2 and 5.4.

To prove Theorem 2.1, it remains to show tkizh(Y (X%")XZT'T] is equal to the two
summations of (2.1). The reader familiar with Malliavin @alus for the computa-
tions of Greeks (see [FL199], [Gob04], ...) may recognize in the expansion of
E[h®) (XM)221] the generic form of some derivatives (or Greeks)Edi(2) (XM)],
derivatives which are written as the expectatiomﬂf(XTM) multiplied by random
weights. This is indeed our methodology to explicitly cortgothe correction terms
in the formula (2.1).

Proof Define the new functios by G(x) = h(x+Xp+ fOT Hidt). One has:

BT = 22T G [ raw + an)
0
T T
=Bl X (oM aw+ uUd)e( | odwe+3r).
0 0

Write (X, ) for the continuous part diXy ). Using Lemma 6.2 (sincér is indepen-
dent of (W )icpo,r) and Lelft € [0,T] : Xy = X1¢— } = 0 a.s. (see page 6 in [Sat99]),
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one gets:

T h(1) (M T Dy 2, [T
BT 0] = E(( | ot x8, )6 | W+ 3r)]
T T
B[ W5 0G| o+ 37)
T T
+E[([ 003G ( [ oW+ )
0 0

T T
B[ W36 aaw+ 3]

Apply Lemmas 6.3 and 6.4 and use Definition 1.4 of Greeks tdhgetesult. O

Remark 2.2The above price approximation is a summation of three terms:

1. E[h(XM)]: The leading order corresponding to the price when the fanst ot );
and(Lk); are deterministic. We know that in this case, there is a diésenula :
either the Merton closed formula for call (put), or FFT tofulsany other payoff
because the characteristic function@f is explicit. For instance, the formula for
a call in the Merton model (see [Mer76]) on the log asset is:

< . T .
Z)(A-—.T)Ie”jg'(“)d“BSCall(Fré<”J+§>,K,T, foatﬁ'ﬂ)
Lol

where

Fr — go*Jo (r(W-a(u)durA (1-expny+)§/2)T

andBSCallS K, T,v) is the Black-Scholes price for a call on an underlyfhg
with initial condition S = S, volatility v, exercised at maturityf and strikeK,
where the risk-free rate and the dividend yield are set at 0%.

2. 53, ai1Greek (XM): The volatility and drift correction term which depends on
the first derivatives oft andg. This term can be computed as easily as the main
term.

3. zi?’:l Bi’TGreelP(XTM +Y’): The jump correction term which depends on the first
derivatives ofy, o and on the jump parameters. Sinéeis also Gaussian and
independent okM, the computation of these Greeks are similar to the previous
ones, by adding to the merﬁ prdt and variancqoT ofdt the quantitiesy; and

V3.
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Remark 2.3In the AA model on the log-asset, one has:

T T y2 T
vt :%/ qz(/ asos‘”ds)dtm(ew%—l)/ totat(l)dt,
t

a3,T:/‘ O-tz(/ USUS ds)d
JO

T
Bl‘T:—/\rIJ/ tog, ' dt,

: JO
T
Bzt :)\(TIJ*VJ)/O toyo, dt,
T

Bat =/\VJ/O taya M dt.

Thus, the computation of these constants is simply reducehlat offOTtatotmdt
and [ o?()T osotMds)dt.

We note that we can perform higher order approximation féasthat remain ex-
plicit. The only difference is that the number of random ghtés used as arguments
for the Greeks will increase with each order, and it is wittie set Xyt + Y] +--- +
Y/)ien. We refer to [Mir09] for higher order terms.

3 Financial Modeling Consequences

For simplicity, we consider the AA model on the log-assetdaalogous statement
would be available for the jump diffusion model on the asset)

The standard Gaussian framework as developed by Blacki&ckp973) and
Merton (1976) is realized by choosing a constant volatfiityction o(-) (the com-
putation is still possible for a function dependent only iomef). In order to arrive at
a coherent, appropriate analysis and modelling for a fixedrite market (without
jump) Andersen and Andreasen [AA02] take a parametric famnot

o(t,x) = v(t)ePO-Ix (3.1)

wherev (t) the relative volatility functionf(t) is a time-dependent constant elasticity
of variance (CEV). Piterbafg[Pit05] uses the same form but applies it to Power
Reverse Dual Currency swaps in order to handle the skew édfxh

Because ofu(t,x) = A(1— e’“*é) - @ the approximation formula (2.1)
depends only o (t,xg), 0V (t,x0),A,ny andy;. The volatility given in equation
(3.1) may generate all possible values of the following tidependent functions
o(t,x0) = v(t)elPO-1% and g (t,x) = (B(t) — 1)v(t)eBO-D%, because it has
two degrees of freedom(t) andf3(t). So this kind of volatility potentially creates all

3 If opy is the local volatility used in [Pit05] ank(t) = e/0(f(W-aW)du one hagr(t,x) = opit (t, L e).
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attainable prices in this class of models, and thus allretde Black-Scholes smiles.
This justifies interest in CEV-type volatility (3.1).

Attainable Black-Scholes smiles using the modeCan we predict the general
form of the smiles generated by this model?

— For short maturity: using our approach, the model is clogléadVerton model
related toxM. Therefore, the shape of implied volatilities forms a snoéé@tered

on a point close to the money, which is on the left wingr- g > 0 (on the right

whenn; + é <0).
Formal Proof: Using the approximation formula, the corriect terms are QT ).
Sowhen T decreases to zero, the price converges to the Matten The second
statement is easy to check. One can follow the approach dDE;&at00] using
characteristic functions, or can prove it directly usingns® derivations of the
Merton formula [Mer76].

— For long maturity: the smile becomes a skew which is due tdabal volatility
function (because the smile for the Merton model flattendoiog maturity).

Smile Dynamics.The model has the Merton model as a good proxy. The implied
volatilities for the Merton model are increasing and depemigt on the ratio between
the forward and the strike. Therefore, the smile should niotiee same direction as
the forward.

4 Numerical Experiments

In this section, we give details of the implementation far #pproximation (2.1) and
illustrate the accuracy of our formula. After that, a geadrootstrap algorithm for
calibration purposes is derived. Finally, a numerical aapion of this algorithm is
applied to market data (currency options).

4.1 Numerical Implementation

The case of time homogeneous paramedxerst(l),ut and ut(l) gives us the coeffi-
cientsa andf exactly (see their expressions in Theorem 2.1).
In addition, when these parameters are time-dependen, &he two cases.

— Either the data are smooth. In this case, we use a Gaussdmregguadrature
formula (see [PTVF92]) for the calculation of the coeffid®a andf3.

— Or the data are piecewise constant. In this case, we can jlieieexpressions
of a andf in terms of the piecewise constantdata. et 0<T) <--- <Tp=T

such thatgg, at(l),ut andut(l) are constant at each interJa, T,.1] and are equal
respectively toor, Gélfl,uml and u%lfl. Before giving the recursive formula,
we need to introduce the following functions;; = jg aszds Wt = fé usds
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Proposition 4.1 Recursive formula.
For piecewise constant coefficients, one has:

Tiy1—T)?
a1, =017 + (T — Ti)ﬂ%ljl@m + %thuﬁl,
a2, =027 + (Tiv1— Ti)(uﬁlwl,n + Umlaélfl wT;)
(T1i-T)*, > 1
+%(O—Ti+1u§i+)1+uTi+1o-Ti+1U'|('i+)1)’

Tip1—Ti)? 1
ast,, =037 + (Tir1— Ti)o-'riuo-'l('iljlwlfﬁ + %O’%HO’-EL,
(51-T9) a
Br., =Prm +A UJLZI“%A’

(T21-T9), 1)
Bty =B +A 5 (Yoktr ) + 1307, 07 ,);
T_2 o T_2
B3,Ti+1 :B&,Ti +A VJLZI)OTHO—#A?

Wi,y =07 + (T —T)0F

i+1’
W T, =0T + (Ti+l - Ti)uTiH-
Proof According to Theorem 2.1, one has:

Ti Ti+l (l) Ti+1 Ti+l (l)
a1t = [ He( ps ds)dt+ e ( s~ ds)dt
0 t T t
Ti Ti+l (1) Ti+1 Ti+l (l)
—aus+ [ ([ uPagate [ ([ uPasat

Ti+1 (1) TI Ti+l 'Ti+1 (l)
—arr+ ([ [t [ [ P agar
(T =T 1)

1
=y + (T — T o+ > T

The other terms are calculated analogously.

4.2 Accuracy of the approximation

Here, we give a short example of the performance of our mefhiogl jump parame-
ters have been set td:= 30% nj = —8%, y5 = 35%. These parameters are not small,
especially for the jump intensity and the jump volatilityy;. The piecewise constant
functionsv andf defined in (3.1) are equal respectively at each interval @foihm
45, 53] to 25%— i x 0.11% and 100%- i x 0.75%. The spot, the risk-free rate and
the dividend yield are set respectively to 1% and 0%.

We observe in the table below that the errors of implied Bl&ckoles volatilities
between our approximation and the price calculated usin¢gD& Pnethod do not
exceed? bp for a large range of strikes and maturities. The computatime of
our formula is less than four milliseconds on & ZZHz Pentium PC. The accuracy

of our formula turns out to be excellent.

hal-00200395, version 2 - 30 Sep 2008
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Table 4.1 Error in implied Black-Scholes volatilities (in bp=0.01%gtween the approximation formula
and the PIDE method expressed as a function of maturitieaatiéns of years and relative strikes.

T/IK 70% 85% 100% 120% 150%
3M 0.02 -0.03 -0.92 -0.07 -0.12
1Y 0.04 0.06 0.15 -0.11 0.01
3Y 0.22 -0.23 0.11 0.41 0.31
5Y 1.39 1.06 -0.01 1.85 1.76

4.3 Calibration issues

For this kind of model (AA model on the log asset or on the ai¢self), calibration
is still challenging as this model has no analytical formiie can still perform a
numerical calibration using the forward PIDE as explaineffNA0Q], but the time
of calibration remains quite long (about one minute). Witlr approach, we can
shorten the duration of calibration to less than one sedm&thuse our computation
of the model price takes four milliseconds as previously tioeed. We achieve that
by a simple bootstrapping algorithm using the path depetrfdemula.

Bootstrap algorithm for piecewise dataSuppose that we want to fit option prices
for n maturitiesTo =0< Ty < --- < Ty andm strikesKy, - - - , K. First, we search
the parametera, ny andy; with best fit. At each intervdlli_1, Ti], the dateo, o,

u andu® are constant, equal respectivelyds, aél), T andu%l), and depending
on the vectory; = (v(Ti), 3(Ti)) (see formula 3.1). Starting &= 1, we express the
coefficientsaj  andj 1, as a function of;, recursively using Proposition (4.1). We
apply a local minimization algorithm (for instance, the baberg-Marquardt as de-
scribed in [PTVF92]) in order to fit the implied volatilitider all strikesKy,--- ,Km

at maturityT; using our approximation (2.1). Once the vecypis found, we go to
the next step+ 1, updatex andf3 and compute; 1.

This calibration procedure is not completely safe. Somesime encounter insta-
bility problems. The final parameters depend on the initigdgs. Moreover, there are
many local minima. To avoid these problems, we could use alaegation method
based on relative entropy (see [CT03]), but these issuasadin direct relation with
the accuracy of our formula. We think that the set of calidlaiptions (call/put) does
not contain enough information on the future volatility tesere a good calibration.
Therefore, it is presumably worth including volatility agns in the set of calibrated
instruments. This is a topic for further research.

Calibration results.Here, we calibrate the EUR/USD exchange rate. The surface of
implied Black-Scholes volatility is given in table 4.2.

The jump parameters for the calibrated modelare1.21%,n; = —19.07% and
ys = 40.30%. The diffusion parametersand 3 for the calibrated model are given
in table 4.3. These values are realistic. The errors betweeimmplied volatilities
generated by the calibrated model and the market data a¥e gitable 4.4.
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Table 4.2 Implied Black-Scholes volatilities for the EUR/USD ratepeassed as a function of maturities
in fractions of years and relative strikes. The spot is etual54.

T/IK 92% 96% 100% 108%

6M 10.82% 10.65% 10.53% 10.56%
1Y 10.84% 10.70% 10.63% 10.66%
1.5 10.71% 10.60% 10.56% 10.58%
2Y 10.60%  10.48% 10.46% 10.47%

Table 4.3 Calibrated values of the piecewise constant functioasid 3.

T % B

6M 10.31% 98.81%

1y 10.27% 100%
1.5Y  9.90% 100%

2Y 9.43% 100%

Table 4.4 Errors between implied Black-Scholes volatilities for B6R/USD rate and those calculated
within the calibrated model (in bp) expressed as a functiomaturities in fractions of years and relative
strikes. The spot is equal to54.

TIK 92% 96% 100% 108%

6M -4 3 -1 -3
1Y 2 1 0 2
1.5Y -1 -3 -2 1
2Y 2 -1 1 4

The errors show that our model is a good model for the FX ratR/EA$D. Within
our relevant algorithm, we are able to fit 4} grid of quoted prices in less thdrs

5 Error Analysis

This section is devoted to the mathematical justificatio leéorem 2.1 and to the
statement and proofs of upper bounds for the error term I).(Bor this, the analysis
differs according to the payoff smoothness (smooth, vawitlbinary). We start with
the smooth case (subsection 5.1), which is less technibain,Twe handle the two
other cases (call/put and binary options), which requiresise of Malliavin calculus.

Throughout these computations, we aim at emphasizing thendkence of error
upper bounds in terms of: the constaiMg,M; andM; defined in (1.5), the jump
frequencyA and the maturityl, in order to support the heuristic choice of the model
proxy (see the discussion in the introduction).

Additional notation.
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— About floating constants and upper bourldghe following statements and proofs,
for the upper bounds we use numerous constants, that arelabeled during
the computations. We simply use the unique notation

A<.B

to assert tha < cB, wherec is a positive constant depending on the model pa-
rameterdVp, M1, M3, A, T, Ce (defined in assumptiofE)) and on other universal
constants. The constaotemains bounded when the model parameters go to 0,
and it is uniform w.r.t. the parametere [0,1]. When informative, we make clear
the dependence of upper bounds wii§, M1, M3, A andT.

— MiscellaneousAs usual, thel ,-norm of a real random variableis denoted by
1Z||p = [E|Z|P]*/P. In the proofs, the derivatives of the parameterized proXés

are useful: they are defined Wt = %‘tlf_

5.1 Error analysis for smooth payoff (undéty))

We begin our error analysis with the case of smooth payo# ¢;5°(R)).

Theorem 5.1 Error for smooth payoff. Assume thatR4) holds and that the payoff
function h fulfills AssumptiofH;). Then the error term in Theorem 2.1 satisfies the
following estimate:

|Errorf <¢ sup |h|e(Miv/T) ((MoVT)? + M2VAT). (5.1)
=12

Let us briefly comment on the upper bound, making referendbeadntroduction.
If the functionso(-) andu(-) are only time dependenif; = 0), the approximation
formula (2.1) is exact (the model and the proxy coincide)h&y do not vary much
w.r.t. x (My is small), the accuracy is still good in view of (5.1). If theefficients
a(-), u(-) and their derivatives and the jump size parameters are all gfme formula
becomes very accurate. For instance, in a multiplicatige @zheres (t,x) = As(t, x),
H(t,x) = Am(t,x) and|n;| + y» < A for a small parameted, it readily follows that
M1, Mg, M = O(A). Thus

[Errorf = O(A3T[VT + VA]).

Consequently, we may refer to the formula (2.1) in Theorebha®.an approximation
of order 2 w.r.t. the amplitudes of the data (with error teoherder 3).
These features arise similarly for the other examples obfiamoothness.

Proof It is divided into several steps. First, we write the SDEssfiatl by the three
first derivatives oiX¢ w.r.t. €. Second, we give tight , upper bounds on these deriva-
tives. Finally, we combine these estimates with our smaraezion to complete the
proof of Theorem 5.1.
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Step 1. Differentiation of X Under (Ry), almost surelyX¢ is C3 w.r.t £ for anyt
(see Theorem 2.3 in [FK85]) and the derivatives are obtaayesliccessive differen-
tiations of the initial SDE (1.3). Thus, direct computatidead to

AXE, =0t (X )W+ pe (X )t +dd + eXE_(0i ) (6 )W+ gt (xmdt)( -
5.2

X, =[2XF,_ 0V (X ) + £(XE, )20 (X )]dw

+ 12X P (6E) + E(XE )2 P (X )dit

+eX8 (0 (6 )W + Y (X)), (5.3)
dXg; =[3%5; Ut(l) (X)) + 3(X1£,t7)20-t(2) (XE) +3eXfi X3¢ Gt(z) (X5)

+&(XE )30 (X AW+ [3XE Y (XE) +3(XE )PP (%)

+3eXE X5, P (X )+ (X )3 (X )t

+exg (ot (6 )dW + P (X )dt). (5.4)

Their initial conditions are all equal to 0. Notice that kelX® andX;, the processes
X$ andX§ are continuous.

Step 2. Tight upper bound$Ve aim at proving the following estimates for apy 2:

E|Xf [P <c (MovV/T)P+MPAT, (5.5)
E|X5 [P <c (MiVT)P((MoVT)P+MPAT), (5.6)
E[X§ [P <c (MivV/T)P((Mov'T)?P +MPAT), (5.7)

uniformly fort <T.

The existence of any moment is easy to establish, but heremyhasize the de-
pendence of the upper bounds w.r.t. the constifgtd;,Mj,A andT. Let us first
prove the inequality (5.5). From (5.2), apply Lemma 6.5 ®jtihmp component and
Burkholder-Davis-Gundy inequalities to the Brownian ptotdeduce

t t
E|XZ,|P gctp/zfl/ E|as()<§)|pds+tp*1/ E|us(X)|Pds+ MPA
’ 0 0
t t
12721 [T ol () s+ 1P 2 [ BjxE gl (x9) s
t
gCTP/ZMg+M§’/\T+TF’/2*1Mf/O E[X¢,[Pds

Using Gronwall's lemma, we easily complete the proof of Y5F®r the second in-
equality (5.6), we proceed analogously and we obtain:

EXG|P <cT p/sz(SUtplEIXf,sler SutpEIXf,slzp)-
s< s<
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Thus, plugging the estimate (5.5) into the previous ineiqudirectly leads to (5.6).
Now let us prove the inequality (5.7). As before, apply BD@dnalities combined
with Gronwall's lemma to obtain that

E[XE,|P <cTP/2MP (SgtpElxésl Pt sgtdEIXf,SIZP + sgtdEIXf,sXésl Pt SgtplEIXf,st)-
s< s< s< s<

Use E|Xf X5 ([P < 3(E|Xf [P + E[X;[?P) and the previous inequalities (5.5-5.6).

Then brlnglng together different contributions easilydedo the required estimate
(5.7).

Step 3. Completion of the proof#ve follow the formal computations done at the
beginning of Section 2, but more carefully. Let us introduce

_ 8)2

. 1 _ 1 1
Xor = / Xsr(1—e)de, Xar = / xg de. (5.8)
JO ’ 0 ’

Then applications of Taylor expansionsXff ate = 0 readily give these equalities:

1 -
SXe 1+ X371

Xr=X"+Xo1, Xr=X"+ 5

where we have use)&lP” = Xo+ X1,1. Thus a second order Taylor expansiorhait
pointXM writes

Eh(x})] =E[h(M 1 22T 4 X37)]

2

—E[h(Q)] + B () 2T

2L)+ B 04 Xa1)
+/ Eh®((1— XM+ vxr)(Xo)? (1 - v)dv.
This proves that the Error term in (2.1) for smooth payoffagu
Error=E[hY (XM X5 1] + /0 11E[h<2> (L—v)XM 4+ vXr)(X21)?)(1—v)dv.  (5.9)
Then it readily follows that

Errort < [hVe sup (E|X51|2)2 + |h @] sup E[XE[2.
£€[0,1] £€[0,1] ’

It is now straightforward to obtain Theorem 5.1, by usingreates (5.6-5.7) with
p=2. O

A careful inspection of the previous proof shows that assiompRs) is sufficient to
derive the error estimate (5.1).
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5.2 Error analysis for vanilla payoff (undeti$))

This case has practical importance, because it includépuabptions. Regarding
the error estimates related to Theorem 2.1, we have pavedahevith the case of
smooth payoff. Nevertheless, there are some technicardiftes. The main one is
that our previous proof represents the error in terms of #doesd derivative of the
payoff, which is meaningless here. The additional ingnetdiethe Malliavin calculus
integration by parts formula to avoid this second derivatippearing. We now state
our main result when the payofff is almost everywhere differentiable (with sub-
exponential growth conditions).

Theorem 5.2 Error for vanilla payoff. Assume thatR4) and (E) hold, and that
the payoff function h fulfills Assumptidhi,). Then the error term in Theorem 2.1
satisfies to the following estimate:

1
Error <e (IR0 |2+ [ 162X +vXr) Jach)

« Mo (MiVT)((MoVT)2+M3VAT).  (5.10)

Oinf

The shape of the upper bound regardimig used for convenience in the proof. In
view of the growth condition oh(), the two first terms depending &Y are finite
and uniformly bounded agp,M;,M;,A andr go to 0.

Analogously to the smooth case (Theorem 5.1), the apprdiamarror in (2.1)
is of order 3 w.r.t. the amplitudes of the model data, meattiag (2.1) is a second
order approximation formula.

Proof We split the proofinto several steps. First, we assume liiegbayoff is smooth
and we establish estimates that depend onli&h the first derivative oh. For this,
we need extra tools from Malliavin calculus, together witght estimates on the
Malliavin derivatives of the parameterized process. Thenapply a density argu-
ment to approximatk under(H;) by a sequence of smooth payoffs.

Step 1. Malliavin calculusFor the usual Malliavin calculus on the Wiener space, we
refer to Nualart [Nua06]. But our case is slighty differeathuse of jumps. However,
in the following, our Malliavin differentiation is w.r.the Brownian motiotW and

not w.r.t. the Poisson measureHence formally, it is performed by leaving the jump
component fixed, computing the Malliavin derivatives oregriation by parts w.r.t.
W, and then integrating out w.r.t. the jumps. This princips bbeen formalized in
several papers, for instance in [BE08] Section 3. We briefball a few facts using
their notations.

The model jumps are associated with the Poisson measwigh intensitygy, ,, (X)dxAdt,
wheregpy, y, is the Gaussian density @ with meann; and variance?. The set of
integer-valued measures iR T| x R is denoted by2,. Forl(.) € .Z =L5([0, T|,R),

the Wiener stochastic integrg 1 (t)dW is denoted byV(l). Let.# denote the class
of simple random variables of the forf= f(W(l1),...,W(In); k) whereN > 1,
(I3,...,In) € 2N, RN x Q +— R is bounded and infinitely differentiable w.r.t. its
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N first components (with bounded derivatives). We denotB lye Malliavin deriva-
tive operator with respect to the Brownian motion. Foe .7, it is defined as the
Z-valued random variable given by

DiF = iayq. FOW(I1),..., W(IN); Kl (1)

The operatoD is closable as an operator frdm(Q) to L p(Q,.%), for anyp > 1.
Its domain is denoted bpLP with respect to the norrj - ||1p given by||F|\§’7p =

E|F|P 4+ E(Jy |D:F|2dt)P/2. We can define the iteration of the operaftin such
a way that for a smooth random varialtife the derivativeD¥F is a random vari-
able with values inZ®K. As in the caseék = 1, the operatoD¥ is closable from
7 CLp(Q)intoLp(Q;.2%K), p> 1. Its domain is denoted EY*P w.r.t. the norm
IFllp = [EIFIP+ 35 E(|DIF|?,.;)]~P. With this construction, the operat@r
enjoys the same properties as the usual operator on the paee (see [BEOS]
for more details). This justifies, in the case under study,ahplication of the usual
results established without jumps (in particular the ird¢ign by parts formula and
the related general,, estimates, see the proof of Lemma 5.3).

Step 2. Estimates of Malliavin derivativednder our regularity assumptioiiRy),

we know that for any < T, anye < [0,1] and anyp > 1, we havexXf ¢ D*P, Xii €
D3P, X5, € D?P, X§, € DLP (see the arguments in [BEO8]). Actually, we aim at
proving the following tight estimates for ampy> 2:

EID X [P <c|ol8, (5.11)
EDXM|P <c|al®, (5.12)
E|[DZXE|P <c |a]8MP, (5.13)
E|D3 XE[P <c |o]BMZP, (5.14)
E|DeX{y|P <c M§, (5.15)
E|DZXE, P <c MEMP, (5.16)
E|D;X5|P <c MY ((MoV'T)P+MJAT), (5.17)
E[DZeX5:|P <c MEMP, (5.18)
E[Dr X5 [P <c MP((MoV'T)?P + M3PAT), (5.19)

uniformly in (r,s,t,u) € [0, T]* ande € [0,1]. Here again, the existence of any mo-
ment is easy to establish and we will skip the details. Wegured focus on the
dependence of the upper bounds wivlg, M1,Mj3,A andT. The bounds (5.16-5.18-
5.19) are not used for vanilla payoffs, but only for binargen

Proof of (5.11)Forr > t, D, Xf = 0. Now taker <t, in this caséD;Xf);<i<T Solves
the following SDE (see [BE08]):

Dy XE = 07 (XE ) + /r Do e(ofP 0 )aw+ pP (X )du),  (5.20)
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which defines a continuous process. Now, we proceed as indoéqf (5.5-5.6-5.7),
combining BDG inequalities and Gronwall’'s lemma. This give

:
DX <e Elor (X¢)[P+ T2 WP | EIDAXE Pdu<c |01,

and proves the announced inequality. Besides, in light df)(@ne hasD, XM =
1,<tor, which directly gives (5.12).

Proof of (5.13).Take for instance < s < T, the other cases are handled in the same
way. We have

DX =eD X os” (X )
t
+ [ DX Drxuiau‘z’<><5,>dvm+or><5,u&2> (X¢.)du)

+ [ 02xg el xs o+ Y (X6 )
which implies, in particular, that— D2 rX is continuous. It readily follows that

E|DZXE|P <c MPED XE|P+TP2MP  sup E|DXEDrXE|P

r<s<u<T

<cMPEIDX¢[P+TP2Mf  sup (E|DsX§[?P+E[DiXS|*) <c |o]EM]

r<s<u<T

where we have used the Young inequality< 5 (a2+b2) in the second line and
(5.11) in the last inequality. The estimate (5. 14) can batdished in the same way.
Proof of (5.15) We only consider <t. Here one has

DiXfe =07 (XF) + X, ot (XE)
t
+ [ DX (6l (6 + x50l (X ))aw

+ [ DO (06 )+ x5, w6 )
+ [ DX e(a 6y + Y 06 ).

It readily follows that

E|De X P <c E|or (XE) +eX§, oY (XE)|P+TP/2MP sup (EIDrXE|P+E[DXEXS|P).
r<u<T

Since a fixed time is equal to a jump time with null probability and thanks to the
Young inequality, we obtain

EID Xf, [P <c|0lf + M{E[X;, [P +Tp/2Mfrfu<DT(]EIDrX5|p +E|De X5 PP+ EIXE ).
sus

It remains to take advantage of the inequalities (5.5) ardl{5and to uség|. < Mg
andM; < Mg to complete the proof of (5.15).

Proof of (5.16-5.17-5.18-5.19)hey can be proved similarly, with long and tedious
computations. Since there is no extra difficulty, we willskirther details.
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Step 3. Bounding the error using onl{*h when h is smoothWe come back to the
representation (5.9) for the error. The first term can beregéd using a Cauchy-
Schwartz inequality and (5.7):

[E® () Xs 7] <c [HO )12 sup [XEr 2
£€[0,1]
<c NP XM [2(MLVT) (MoV'T)? +MEVAT).
This fits the required upper bound (5.10) well, becadge> Oins.

The second term in (5.9) requires a little extra work becafi$&?). For this, we
state a lemma, proof of which is given at the end.

Lemma 5.3 Assume (E) and @ Let Z belong tan,>1D%P. For any ve [0, 1], for
k= 1,2, there exists a random variablg/ # any L, (p > 1) such that for any function
| € ¢5°(R), one has

E[IY (vXr + (1—v)X¥)Z] = E[l (WX + (1—v)X*)Z].

2l 1
P12 uniformly in v.

v
Moreover, one ha8zy||p <c i

Apply this Lemma withk = 1 andZ = (X, 1)? defined in (5.8). From the estimates
(5.6-5.17), we readily obtain

(M1vT)?((Mov'T)? + M3VAT)
Ont VT '

We have proved the upper bound (5.10).

1245 <c

Step 4. Bounding the error under the sole assumpttds). So far, our error esti-
mates depend ohY, but they have been established for smooth payffs re-
mains to justify that the error upper bound still holds foypffis that are only almost
everywhere differentiable (assumpti@f,)). We argue by regularization, which is
somewhat standard but a bit tricky here. We follow the prd¢GiMO05].

Denote byp the measure defined bf g(x)p(dx) = E(g(Xr)) + E(g(XM)) +
E(GXM +Y')) + [FE(QVXr + (1 —v)XM))dv. It is well known (see [Rud66] for
instance) that there exists a sequefltgncy Of smooth functions converging to
in L3(p) as well as its first derivative, asgoes to infinity. Thus, we can pass to
the limit for E(hn(Xr)) andE(h,(XM)). In view of (5.10), we can also pass to the
limit for the error bound. It remains to pass to the limit fbetcorrections terms, i.e.
for the greeks Greé‘k(X%") and GreeR”(X%" +Y’). To accomplish this, we represent
them ask(hn(XM)Z;) andE(hy (XM +Y’)Z) using Lemma 5.3 witlZ = 1. SinceZ,
is in L3/, we can pass to the limit as— o to getE(h(XM)z;) = Greek (XM) and
E(h(XM +Y")Z) = GreeR(XM +Y'). O

Proof of Lemma 5.3Takek =1 or 2.
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Step 1. F= vXr + (1—v)XM is a non degenerate random variable (in the Malliavin
sense).Under (Ry), we know thatF, is in Np>1D*P. One has to prove that, =

fOT(DSFV)stis almost surely positive and its inverse is in dnyy(p > 1). From the
linear SDE (5.20) satisfied byDsX; )s<t<T, we obtain

T
Y = / (VOs(Xs_ )eld o (e oWt (s~ o]
JO

which clearly leads to our claim. Besides, for gny 1, we derive
& Hlp <c (Gt VT) 2.

1)

P du L (1 v) (%)) 2ds

Step 2. Integration by Parts formuldJsing Proposition 2.1.4 and Proposition 1.5.6
in [Nua06], one gets the existenceyfin L , with

~1yk k
”Z\k/HD <c HVF\,1||k’2kp(2p+1)HDFV”k’zkp(zijl)”Z”k’er%'
Step 3: Upper bound dfDF,[lq, [V llkq for g > 2. On the one hand, using the
inequalities (5.11-5.12-5.13-5.14), we easily obtain
IDFy[lkg <c |0lwVT. (5.21)

On the other hand, with the same inequalities, we getsup|Dy v |P <c TP|o[2PM]
and supst E|DZsk P <c TP|g[2PMZP for any p > 2. Then, after some computa-
tions, it follows that

Mio|5T2  MEoET | Mf[ofaT
+ O'-Z + 0-2 + 4 )

Ve Hl2,p <c (Gins VT) 72(1
inf inf O-inf

(5.22)

for any p > 2. Finally using|o|. < Ceoint (assumptior(E)) combined with (5.21)
and (5.22), we get

—1k k -2k k —k
||Vﬁ,l|‘k,2kp(2p+l)||DFVH|(,2kp(2p+l) <c (Uinf\/f) (|U|°°ﬁ) <c (Ginf\/f) .

This completes our proof.O0

5.3 Error analysis for binary payoff (undet))

For this kind of option, the payoffis not necessarily smooth. We only assume khat
is in 2Z. The results below are easy extensions of the vanilla optiase, we leave
the proof to the reader.

Theorem 5.4 Error for binary payoff. Assume thatR4) and (E) hold, and that the
payoff function h fulfills Assumptiditls). Then the error term in Theorem 2.1 satis-
fies the following estimate:

o <c (10 s+ [ 1AV 4050

><(—M1 +—M%)((M VT)2 +M2
: > oV T)“+Mj )\T).
Oinf  Oj¢
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Unlike the cases of smooth and vanilla payoff, for binarygfés/the approximation
formula (2.1) is of first order w.r.t. the amplitudes of thedrbdata (with error terms
of order 2). This is inherent to the lack of regularity of treeypff.

6 Appendix

6.1 Technical results related to explicit correction terms

In this subsection, we bring together the results (and fhveiofs) which allow us to
derive the explicit terms in the formula (2.1).

In the following, (u;) (resp.(v) and(w)) are square integrable and predictable (resp.
deterministic) process ands a smooth function with compact support.

Lemma 6.1 For any continuous (or piecewise continuous) function fy aontinu-
ous semimartingale Z vanishing at t=0, one has:

/OT fttht:/OT(/tT fd9dz.

Proof This follows from the 1td formula applied to the prodLﬁgitT fsds)z. O

Lemma 6.2 One has:
E[(/OT U dW)! (/OT vidW)] = E[(/OTVtutdm(l)(/oT v dW)].

In the case of deterministic u, it is equalf§ vtutdtGreeIi’i(foT vidW).

Proof We first give the proof in a particular case wheandv are equal to 1. By a
usual integration by parts formula, one has:

2

E[l (We )Wr] = /il(ﬁx)\/fx\e/—jx_ndx: /:OTI(”(\/TX)%de: TEI® (Wr)].

For the general proof: apply the duality relationship of ié&in calculus (see Lemma
1.2.1 in [Nua06]), identifying 1td’s integral and Skorahoperator for adapted inte-
grands. O

Lemma 6.3 Write (Xf, ); for the continuous part ofXy ¢ );. One has :

E[(/OT WXE db)l (/OT v dW)] = /OT VtUt(/tT vsds)dtGreelli(/OT wdW)

+ /OAT yt(/tT vsds)dtGreeI{g(/oT Ve dW).
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Proof Applying first Lemma 6.1 tdf (t) = v andZ = X{,, one has:

([ wal( [ waw)l =Bl [ ([ vagaxti( [ waw)

. . . T T . T
=EI([ ([ ved9(orei+ et (| wadw)]
= ([ ([ vaganEn®( [ vaw)

+ (/OT ut(/t‘T Vsdgdt)E[l (./(;T wdW)],

and we have used Lemma 6.2 for the last equality.

Lemma 6.4 One has:
T T
]E[(/O Vddt)l (3r)] = A (nJ/O tudt Greek(Jr +Y')

T
+ VJ/ twdtGreek (Jr +Y')),
0

such that Y is an independent copy of the variab{@f);cn- -

Proof Using the independence of incrementsJpone has:
T T T
E[(/O thtdt)I(JT)]:/o vtIE[JtI(JT—Jt+Jt)]dt:/0 WE[ (I — J)]dt.

Using a conditioning argument and sin;?ile is a Gaussian random variable, one
has:

k k
= I = =k il i
1(X) =E[&l(x+ )] €ZN*IP’('\'t )E[j;YJ (x+ JZlYJ)]

k

K k
= ke%* ]P)(Nt = k)k(nJE“ (X+ JZle)] + VJE“ (1) (X+ JZle )])

k+ k+
— 5 ME(N =N zim] I zivjm
eN = =

= A(ME[ X+ %+ Y]+ BEIY (x+ J +Y)),
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with Y’ as in the lemma statementd

6.2 Upper bound for compound Poisson process

Lemma 6.5 TheL p norm (p> 1) of the compound Poisson process at time T
can be estimated as follows:

E|%|P <c MPAL.
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Proof SetZ; = (Yj—nj)/ys. The random variablgZ;); are i.i.d. Gaussian variables,
with zero mean and unit variance. Then

N N N
=13 M0zl < ImiN+ vl S Zi <M+ S Z4)).
A A &

Now it only remains to compute thgth moment ofN; andK; = |z'j\';lzj|, which
is considered a standard exercise. We give few details aheusecond terni;.
First compute the characteristic functipiu) = E(e" 3z ) = exp(At(e /2 —1)).
Then for an even integgy, one hai(y ', Z;)P = E(KP) = iP¢(P)(0) = O(At). For
odd values of of the formp = 2k+ 1, we apply the inequalitab < (a2 + b?) to
write KP < 3(K +K&*2). The result then follows by using the estimates from the
previous casegeven). O
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